Besov spaces and Carleson measures on the ball

نویسنده

  • H. Turgay Kaptanoğlu
چکیده

Carleson and vanishing Carleson measures for Besov spaces on the unit ball of CN are defined using imbeddings into Lebesgue classes via radial derivatives. The measures, some of which are infinite, are characterized in terms of Berezin transforms and Bergman-metric balls, extending results for weighted Bergman spaces. Special cases pertain to Arveson and Dirichlet spaces, and a unified view with the Hardy-space Carleson measures are presented. Weak convergence in Besov spaces is characterized, and weakly 0-convergent families are exhibited. Carleson measures are applied to characterizations of functions in weighted Bloch and Lipschitz spaces. To cite this article: H.T. Kaptanoğlu, C. R. Acad. Sci. Paris, Ser. I 343 (2006). © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Les espaces de Besov et les mesures de Carleson dans la boule. Utilisant les inclusions dans les espaces de Lebesgue à l’aide des dérivées radiales nous définissons les mesures de Carleson et les mesures de Carleson évanescentes dans le cadre des espaces de Besov de la boule unité de CN . Ces mesures (certaines d’entre elles sont infinies) sont caractérisées à l’aide des transformées de Berezin et de boules dans la métrique de Bergman, ce qui nous permet d’étendre les résultats des espaces de Bergman avec poids. Notons les cas particuliers des espaces d’Arveson et de Dirichlet. Nous présentons un point de vue unifié avec les mesures de Carleson des espaces de Hardy. La convergence faible dans les espaces de Besov est caractérisée et nous donnons des exemples de familles qui convergent faiblement vers 0. Les mesures de Carleson sont utilisées pour caractériser les éléments des espaces de Bloch avec poids et des espaces de Lipschitz. Pour citer cet article : H.T. Kaptanoğlu, C. R. Acad. Sci. Paris, Ser. I 343 (2006). © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bergman-type Singular Operators and the Characterization of Carleson Measures for Besov–sobolev Spaces on the Complex Ball

The purposes of this paper are two fold. First, we extend the method of non-homogeneous harmonic analysis of Nazarov, Treil and Volberg to handle “Bergman–type” singular integral operators. The canonical example of such an operator is the Beurling transform on the unit disc. Second, we use the methods developed in this paper to settle the important open question about characterizing the Carleso...

متن کامل

Bergman-type Singular Integral Operators and the Characterization of Carleson Measures for Besov–sobolev Spaces on the Complex Ball

The purposes of this paper are two fold. First, we extend the method of non-homogeneous harmonic analysis of Nazarov, Treil and Volberg to handle “Bergman–type” singular integral operators. The canonical example of such an operator is the Beurling transform on the unit disc. Second, we use the methods developed in this paper to settle the important open question about characterizing the Carleso...

متن کامل

The characterization of the Carleson measures for analytic Besov spaces: a simple proof

In this note we return on the characterization of the Carleson measures for the class of weighted analytic Besov spaces Bp(ρ) considered in [ARS1], Theorem 1. Since our first paper on this topic, we have found shorter or better proofs for some of the intermediate results, which were used in proving various extensions and generalizations of the characterization theorem, [A][ARS2][ARS3]. Here we ...

متن کامل

The Corona Theorem for the Drury-arveson Hardy Space and Other Holomorphic Besov-sobolev Spaces on the Unit Ball in C

We prove that the multiplier algebra of the Drury-Arveson Hardy space H n on the unit ball in C n has no corona in its maximal ideal space, thus generalizing the famous Corona Theorem of L. Carleson in the unit disk. This result is obtained as a corollary of the Toeplitz Corona Theorem and a new Banach space result: the Besov-Sobolev space B p has the ”baby corona property” for all 0 ≤ σ < n p ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006